Automatic Markov chain Monte Carlo Procedures for Sampling from Multivariate Distributions

نویسندگان

  • Roman Karawatzki
  • Josef Leydold
چکیده

Generating samples from multivariate distributions efficiently is an important task in Monte Carlo integration and many other stochastic simulation problems. Markov chain Monte Carlo has been shown to be very efficient compared to “conventional methods”, especially when many dimensions are involved. In this article we propose a Hit-and-Run sampler in combination with the Ratio-of-Uniforms method. We show that it is well suited for an algorithm to generate points from quite arbitrary distributions, which include all log-concave distributions. The algorithm works automatically in the sense that only the mode (or an approximation of it) and an oracle is required, i.e., a subroutine that returns the value of the density function at any point x. We show that the number of evaluations of the density increases slowly with dimension. Subject classification: Simulation: multivariate random variate generation (Markov chain Monte Carlo, hit-and-run sampling, ratio-of-uniforms, log-concave distributions)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Markov chain Monte Carlo methods for visual tracking

Tracking articulated figures in high dimensional state spaces require tractable methods for inferring posterior distributions of joint locations, angles, and occlusion parameters. Markov chain Monte Carlo (MCMC) methods are efficient sampling procedures for approximating probability distributions. We apply MCMC to the domain of people tracking and investigate a general framework for sample-appr...

متن کامل

Multivariate-from-Univariate MCMC Sampler: The R Package MfUSampler

The R package MfUSampler provides Monte Carlo Markov Chain machinery for generating samples from multivariate probability distributions using univariate sampling algorithms such as slice sampler and adaptive rejection sampler. The multivariate wrapper performs a full cycle of univariate sampling steps, one coordinate at a time. In each step, the latest sample values obtained for other coordinat...

متن کامل

Extending the rank likelihood for semiparametric copula estimation

Quantitative studies in many fields involve the analysis of multivariate data of diverse types, including measurements that we may consider binary, ordinal and continuous. One approach to the analysis of such mixed data is to use a copula model, in which the associations among the variables are parameterized separately from their univariate marginal distributions. The purpose of this article is...

متن کامل

Simulation of the Matrix Bingham–von Mises–Fisher Distribution, With Applications to Multivariate and Relational Data

Orthonormal matrices play an important role in reduced-rank matrix approximations and the analysis of matrix-valued data. A matrix Bingham-von Mises-Fisher distribution is a probability distribution on the set of orthonormal matrices that includes linear and quadratic terms, and arises as a posterior distribution in latent factor models for multivariate and relational data. This article describ...

متن کامل

Markov Chain Monte Carlo Methods Based On`slicing ' the Density Function

One way to sample from a distribution is to sample uniformly from the region under the plot of its density function. A Markov chain that converges to this uniform distribution can be constructed by alternating uniform sampling in the vertical direction with uniform sampling from the horizontaìslice' deened by the current vertical position. Variations on such`slice sampling' methods can easily b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006